Ferroelectric Domain Structure and Local Piezoelectric Properties of Lead-Free (Ka0.5Na0.5)NbO3 and BiFeO3-Based Piezoelectric Ceramics
نویسندگان
چکیده
Recent advances in the development of novel methods for the local characterization of ferroelectric domains open up new opportunities not only to image, but also to control and to create desired domain configurations (domain engineering). The morphotropic and polymorphic phase boundaries that are frequently used to increase the electromechanical and dielectric performance of ferroelectric ceramics have a tremendous effect on the domain structure, which can serve as a signature of complex polarization states and link local and macroscopic piezoelectric and dielectric responses. This is especially important for the study of lead-free ferroelectric ceramics, which is currently replacing traditional lead-containing materials, and great efforts are devoted to increasing their performance to match that of lead zirconate titanate (PZT). In this work, we provide a short overview of the recent progress in the imaging of domain structure in two major families of ceramic lead-free systems based on BiFeO₃ (BFO) and (Ka0.5Na0.5)NbO₃ (KNN). This can be used as a guideline for the understanding of domain processes in lead-free piezoelectric ceramics and provide further insight into the mechanisms of structure-property relationship in these technologically important material families.
منابع مشابه
Studying the Effects of Nano Sintering Additives on Microstructure and Electrical Properties of Potassium-Sodium Niobate Piezoceramics
In this paper, lead free (K0.48,Na0.52)NbO3 (KNN(48-52)) piezoelectric ceramics were made by conventional solid state sintering process. Additives of nano ZnO (n-ZnO), nano CuO (n-CuO) and nano SnO2 (n-SnO2) were used in order to decrease the sintering temperature, as well as modifying the dielectric, piezoelectric and ferroelectric propert...
متن کاملEffect of Calcination Kinetics and Microwave Sintering Parameters on Dielectric and Peizo-Electric Properties of(K0.5Na0.5) NBO3 Ceramics
An efficient solid-state approach was established to synthesize (K0.5Na0.5) NbO3 ceramics using calcination kinetics and microwave assisted sintering. Milling of carbonate and oxide raw materials were carried out for 15h to obtain homogeneous nano particles. The crystallite size of 5.30 nm was obtained for the KNN system after calcination through optimized parameters and observed to be stoichio...
متن کاملSol-Gel Synthesis and Piezoelectric and Structural Properties of Zr –rich PZT Nanoparticles
Lead zirconate titanate (PZT) nanopowders with spherical-shaped morphology, perovskite structure and an average size of 20 nm were successfully synthesized. The prepared PZT nanopowders were characterized by differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), Energy dispersive X-ray (EDS) and Transmission electron microscopy (TEM) technique. Single-...
متن کاملElectrical properties of lead-free 0.98(Na0.5K0.5)NbO3-0.02Ba(Zr0.52Ti0.48)O3 piezoelectric ceramics by optimizing sintering temperature
Lead-free 0.98(Na0.5K0.5)NbO3-0.02Ba(Zr0.52Ti0.48)O3 [0.98NKN-0.02BZT] ceramics were fabricated by the conventional mixed oxide method with sintering temperature at 1,080°C to 1,120°C. The results indicate that the sintering temperature obviously influences the structural and electrical properties of the sample. For the 0.98NKN-0.02BZT ceramics sintered at 1,080°C to 1,120°C, the bulk density i...
متن کاملImproving the functional properties of (K0.5Na0.5)NbO3 piezoceramics by acceptor doping
ZrO2 and TiO2 modified lead-free (K0.5Na0.5)NbO3 (KNN) piezoelectric ceramics are prepared by conventional solid-state reaction. The effect of acceptor doping on structural and functional properties are investigated. A decrease in the Curie temperature and an increase in the dielectric constant values are observed when doping. More interestingly, an increase in the coercive field Ec and remanen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2017